If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2-20x-6=0
We add all the numbers together, and all the variables
x^2-20x-6=0
a = 1; b = -20; c = -6;
Δ = b2-4ac
Δ = -202-4·1·(-6)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{106}}{2*1}=\frac{20-2\sqrt{106}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{106}}{2*1}=\frac{20+2\sqrt{106}}{2} $
| 4y+20=(3y+5) | | (5x-3)(5x-3)=-32 | | 2x4−3x+5=-2 | | 4n-5=-9(7-3n) | | 3(x-1)+2(2x+3=7) | | 168=4x+2x/3 | | 4n-6=-9(7-3n) | | 3(x-1)+2(2x+3=7 | | 2(10×+2)+6x=12x+84 | | F=2+-1x-1 | | 1-7(7r-1)=155 | | 6(x-20)=47 | | 133=7(-6+5x) | | 133=7(6+5x) | | 9x+6=8x-3 | | -103=-3(4n+1)-4 | | 9{h-7}=36 | | 6x/4-3=6 | | -5(6b+6)=-120 | | -4(8b-4)=-144 | | 5(4+7x)=230 | | |8x-5|=11 | | -138=6(1+4k) | | 8(6n-3)=-120 | | (a/3)+3=4 | | 18a+–8a+5a−1=–16 | | 12x=-8^2 | | 3x+19=10x10+37 | | -6(8-7r)=-132 | | -6(8-7r)=-137 | | 3a^2+a-3=0 | | 9h-7=133h+9 |